

ENGINEERING COURSES TAUGHT IN ENGLISH AT INSA ROUEN NORMANDIE

FOR EXCHANGE STUDENTS

INTRODUCTION

INSA Rouen Normandie holds a very strong position within the French higher education system of engineering schools. Our missions revolve around four poles of expertise associated with an interdisciplinary theme: risk management.

The INSA curriculum is a 5-year program that leads to the **"Diplôme d'Ingenieur"** which is equivalent to a Master of Science. The first two years are made up of a common core for all engineering students to ensure strong fundamental knowledge. At the end of the second year, students choose a department in which to specialize for the remaining three years.

Humanities and Social Sciences

Humanities and Social Sciences represent 20% of the curriculum at INSA Rouen Normandie. They include business Training [Management & Economics, Enterpreneurship, Communication & Interpersonal Skills], Foreign Languages & Culture, and Physical Education. Among elective courses, students can take artistic classes [Drama, Choir and Music] taught by professionals.

 ${}^{ extsf{Q}}$ Find information about the "Welcome to France" <u>here</u>

SELECTING COURSES

Exchange students can select courses from one of the seven specialized departments. If the department schedule allows it, they can attend courses in other departments.

Lastly, there are research opportunities for exchange students wishing to gain hands-on experience. Students can partake in research part-time or full-time.

ADVICE: Get in contact with the <u>academic coordinator</u> for exchange students of your department of interest before submitting your online application. He or she can provide you with the most up-to-date information regarding course availability and guide you according to your academic background and interests.

INSA, a French engineering school at a glance

Year of study Semester	
1st year Semester 1 (Fall)	
Semester 2 (Spring)	<u>ر</u>
2 nd year Semester 3 (Fall) – Bachelor level	iieu ree
Semester 4 (Spring)	ıgénieu degree
3rd year Semester 5 (Fall)	e d'Ingénieur ring degree
Semester 6 (Spring) + Technician internship	ne o erii
4th year Semester 7 (Fall)	Diplôme (Engineeri
Semester 8 (Spring) + Specialty internship	Dip Eng
5th year Semester 9 (Fall) Master level	
Semester 10 (Spring) + Engineer Internship	

Fall semester: September- January Spring semester: February - June

7 departments from which to choose

Computer Science and Information Technology Informatique et Technologies de l'Information	ITI
Mechanical Engineering Mécanique	MECA
Industrial Risk Management and Process Engineering Génie des procédés et gestion des risques	GPGR
Energy engineering Génie énéergétique (parcours EP)	GE
Chemistry and chemical engineering Chimie Fine et Ingénierie	CGC
Mathematical and Software Engineering Génie mathématique	GM
Civil and Urban Engineering Génie civil et constructions durables	GCU

Research opportunities in labs

- **COBRA**: Organic and Bio-Organic Chemistry Reactivity and Analysis
- o CORIA: Inter-professional Research Complex in Aerothermal Chemistry
- **GPM**: Group for Physics of Materials
- o LITIS: IT Laboratory, Information Processing and Systems
- LMI: INSA Mathematics
- LMN: Normandy Mechanics Laboratory
- LSPC: Laboratory for Chemical Process Safety
- **PBS**: Polymer and Bio-polymer Surfaces

 \checkmark Access the laboratories websites here

GRADING SYSTEM AT INSA ROUEN

INSA ROUEN NORMANDIE (F FROUEN06) uses the 20 point scale used in the French grading system. A grade of 20 represents the highest grade, while 0 is the lowest. In reality it is rare to see grades below 8 or above 16. Marks of 20, 19 and 18 are very rarely given. Students must obtain an overall average of 10 or above in each thematically-grouped block (called "UE") of courses, (called "ECs"), in order to pass from one year of study to the next. This rule does not apply to exchange students who can choose courses from different UEs, each course being graded separately.

INSA ROUEN Marks/20	Interpretation used by INSA Rouen	Equivalences with ECTS grades
19-20	EXCELLENT – outstanding level	A+ (excellent)
17-18	VERY GOOD – well above average	A (very good)
15 - 16	GOOD – generally sound work with very few shortcomings	B+ (good)
13-14	SATISFACTORY – generally sound work with a few shortcomings	B (satisfactory)
11-12	SUFFICIENT- fair but with significant shortcomings	C (sufficient)
10	PASSING – performance meets the minimum criteria	D (passing)
< 10	FAIL – further work required before credit can be awarded	F (fail)

ECTS credits:

1 full academic year = 60 credits 1 semester = 30 credits

Studies at INSA Rouen Normandie

Sem 1	Sem 2	Sem 3	Sem 4	Sem 5	Sem 6	Sem 7	Sem 8	Sem 9	Sem 10
1 st Ye	ear	2 nd Ye	ear	3 rd Y	'ear	4 th Year 5 th Year		Year	
180 ECTS				120 ECTS					
Bachelor's degree (EQF Level 6)			М	aster's degree	e (EQF Leve	7)			
"Diplôme d'Ingénieur" = 300 ECTS									

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

The ITI engineer is a computer engineer with expertise in information systems. Software development, networks, decision support techniques (machine learning, data mining), perception systems (signal or image acquisition and processing) as well as mastering large IT projects (management, quality) are examples of skills acquired in this training.

	3RD YEAR
<i>FALL – S5</i> <u>ITI31-ELEC</u> : Electronics for embedded systems This course introduces the basic notions of analog and digital electronics to 3rd year engineering students. The objective is to enable them to understand the role of electronic components in the design of calculators, microprocessors, computers. How electricity and semiconductors enable complex calculations or represent binary states. Students should be able to design electronic systems from existing components (sensors and actuators) based on predefined specifications by the end of this course.	4 ECTS
	4TH YEAR
<i>FALL – S7</i> <u>ITI41-OPTIMIZATION 2</u> : Numerical Optimization The objective of this course is to acquire a basic knowledge in numerical optimization.	2,5 ECTS
 ITI41-ML: Machine Learning The course introduces machine learning methods and applications. The main objectives are: Know how to perform exploratory analysis, visualization and description of data Know how to identify different categories of statistical learning problems Know how to use optimization algorithms and software tools to solve these statistical learning and data processing problems Know how to evaluate learning algorithms and select the appropriate model 	4,5 ECTS
<u>TI41-TW2</u> : Web Technologies II This course is dedicated to advanced full stack web development, including dynamic web programming in JavaScript for both server and client sides (Node.js, Express.js, Vue.js), as well as event-driven and asynchronous programming. SPRING – S8	2,5 ECTS
ITI42-BGD: Big Data The objectives of this course are: 1) Understand the issues and problems associated with storing and processing massive data 2) Understand the limitations of traditional (relational) database management systems and the solutions suited to data-intensive distributed systems 3) Learn how the MapReduce algorithm works 4) Learn to use the Apache Hadoop ecosystem 5) Learn how to manage streaming data with Spark 6) Learn about distributed computing with Spark 7) Discover NoSQL technologies (using MongoDB)	4,5 ECTS
ITI42-RL: Representation Learning The purpose of this lecture is to familiarize the student with learning and data mining methods on huge amount of data. The main objectives are: Learn about nonlinear approaches based on statistical learning theory. Be familiar with state-of-the-art research. Implement these approaches using Python machine learning libraries (SciKitLearn, 	4,5 ECTS

 Implement these approaches using Python machine learning libraries (SciKitLearn, Keras, etc.).

FALL—S9	5TH YEAR
ITI51-MLA: Advanced Machine Learning	4,5 ECTS
The objectives of this course are to: 1) discover an overview of recent statistical learning methods	
2) Master the learning of dictionaries for signal and image representation (denoising) 3) Learn	
about matrix factorization (e.g. recommendation systems).	
ITI51-IHME: Evolved Human Machine Interactions	4,5 ECTS
The objectives of this course are to: 1) exploit data collected from human-computer and human-	
computer-human interaction to develop applications that can adapt according to users and	
context; 2) illustrate the concepts of a proactive behavior and/or adapted information that would	
propose an advanced HMI; 3) exemplify these concepts in existing applications. An introduction	
to research (bibliographic synthesis, modeling a scientific problem, etc.) is also included in the	
course content.	
TI51-DLA: Advanced Deep Learning	4,5 ECTS
The objectives of this course are to: 1) discover recent and SOTA deep learning architectures 2)	
discover (and overcome) potential pitfalls (fairness, privacy and robustness) of deep learning models 3) apply SOTA models on real applications.	
nodels 57 apply 501A models on real applications.	
FRENCH AS A FOREIGN LANGUAGE (FLE)	
FLE courses are available for international students throughout the academic year.	1,5 ECTS
	1,5 2015
INDUSTRIAL PROJECTS	
<u>TI42-PIC</u> : 4th year Industrial Project (Fall semester only)	14 ECTS
Software production in collaboration with a company a team of 5 to 9 students working	
professionally with a company.	
ASI51-PIC: 5th year Industrial Project (Spring semester only)	14 ECTS
Software production in collaboration with a company a team of 5 to 9 students working	
professionally with a company.	
RESEARCH AND DEVELOPMENT PROJECT	
Students can conduct research alongside an experienced professor who will act as a mentor.	15 ECTS PT
Research topics are developed by the professor in the fields of Information Systems, Data	30 ECTS FT
Engineering or Vision oriented Embedded Systems.	
· · · · · · · · · · · · · · · · · · ·	
ASSOCIATED LABS	

LITIS

https://www.insa-rouen.fr/recherche/laboratoires/litis

PT: Part-time FT: Full-time

<u>iti@insa-rouen.fr</u>

Find more information about the department on Youtube \underline{here}

MECHANICAL ENGINEERING

The Mechanical Engineer is involved at all levels of the industrial process: general or detailed design, choice of materials, implementation, manufacturing, maintenance. He masters modeling, optimization as well as product development or new materials.

	5TH YEAR
FALL – S9	
M51- FIA: Reliability Engineering	3 ECTS
The purpose is to introduce the main aspects of the reliability applied to the problems of mechanics	
of materials or structures. Notion of failure and safety scenario and probability of failure.	
MECA51-ROAD : ROAD	1 ECTS
MECA51-MLEARN: Machine Learning	1 ECTS
The basis of data-driven techniques applied to mechanics is discussed, along with the programming	
of various neural network architectures.	
MECA51-LBM: Lattice Boltzmann Method	2 ECTS
Learn the fundamentals and the practice of the Lattice Boltzmann Method for simulating flows in	
complex geometries.	
MECA51-PROPUL: Propulsion Systems	1 ECTS
The course gives a theoretical basis for the operation of a turbo machine (centrifugal pump,	
compressors, turbines), essentially from the point of view of fluid mechanics.	
MECA51-WIND: Wind	2 ECTS
Modeling turbulence in the near wall region. Aerodynamics of helicopter rotors.	
M21-IC-CBI: Bio-inspired conception	3 ECTS
Introduce fundamental concepts of Bio-Inspired Mechanical Design, an approach that seeks	
solutions to human challenges within the natural world. Methods and solutions from structural	
mechanics and materials will be studied.	
MECA51-AGD: Advanced Gas-Dynamics	1 ECTS
The objective of this course is an introduction to the measurement techniques used to develop,	1 2015
characterize and control aeronautical propulsion systems.	
MECA51-FSI: Fluid-Structure Interaction	1 ECTS
The objective of this course is the study of compressible flows and sizing of wings in supersonic and	1 2015
hypersonic flow (2D).	
MECA51-MODEL: Turbulent reacting flow modeling	2 ECTS
The concepts and modeling tools used in industry for virtual prototyping of liquid and gaseous	2 2015
turbulent reacting flows are discussed.	
MECA51-TURBUL: Turbulence Modeling	1 ECTS
The fundamentals of Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) are	TLCIS
presented given their application for the optimization and the design of complex flow systems.	
M51- AERO-0: Aeronautics	
The objective of this race is to light up the context in which aeronautical propulsion system	1,5 ECTS
technologies develop and evolve.	1,5 EC13
M51- AERO-A: Aeroacoustics	
<u>MO1- ACRO-A</u> . Aeroacoustics The objective of this course is the introduction to linear acoustics as well as aeroacoustics for flows	1,5 ECTS
	1,3 EC13
with low Mach numbers.	
MECA51-HOCFD: High-Order for fluid flows	
The most advanced discretization techniques and algorithms are presented to simulate flow in	2 ECTS
complex geometries with high-order accuracy.	

MECHANICAL ENGINEERING

<u>PROJECT</u> : Structure or Reliability This project presents 20 percent of the whole semester's workload (30 ECTS).	9 ECTS
<u>PROJECT</u> : I2P - Materials This project presents 30 percent of the whole semester's workload (30 ECTS).	9 ECTS
<u>PROJECT</u> : AERO This project presents 20 percent of the whole semester's workload (30 ECTS).	9 ECTS

FRENCH AS A FOREIGN LANGUAGE (FLE) FLE courses are available for international students throughout the academic year.	2 ECTS
RESEARCH AND DEVELOPMENT PROJECT	
Students can conduct research alongside an experienced professor who will act as a mentor. Research topics are developed by the professor in modeling, optimization,	15 ECTS PT 30 ECTS FT
product and new materials development.	

Specific tracks	Abbreviations
Engineering-Product-Process	I2P
Aerospace	AERO
Structures in their environment	Structure
Materials	Materials
Reliability	Reliability

> ASSOCIATED LABS CORIA http://www.coria.fr/ GPM http://gpm.univ-rouen.fr/ LMN http://lmn.insa-rouen.fr/

meca@insa-rouen.fr

Find more information about the department on Youtube <u>here</u>

CHEMISTRY AND CHEMICAL ENGINEERING

Chemical engineers are general engineers with expertise in fine chemistry, chemical process engineering and polymer materials. Health, safety at work and the environment are at the heart of their concerns.

	4TH YEAR
SPRING – S8	
CGC42-OCS: Observation and control of systems	3 ECTS
Introduction to process automation. Automatic control and observation of a process, without	
human intervention.	
CGC42-HSA: Heterochemistry and Asymmetric Synthesis	3 ECTS
Organic chemistry course on properties and synthesis of compounds comprising Phosphorus,	
Sulfur and Silicon atoms (Wittig, Staudinger, Mitsunobu, Swern, Peterson). The second part is	
dedicated to enantioselective synthesis bases.	
CGC42-HOM: Heterocycles and Organometallics	3 ECTS
Organic chemistry course on heterocycles chemistry, organometalics and transition metal catalysis.	
CGC42-ANASOL: Anasol	2,5 ECTS
Main solid analysis techniques	,
CGC42-CORR: Corrosion	2,5 ECTS
Different corrosion mechanisms and means of struggle against corrosion	
CFI42-ORGA+: Advanced Organic Chemistry	2,5 ECTS
Advanced asymmetric synthesis, retrosynthesis, protecting group	

FRENCH AS A FOREIGN LANGUAGE (FLE)	
FLE courses are available for international students throughout the academic year.	

RESEARCH AND DEVELOPMENT PROJECT

Students can conduct research alongside an experienced professor who will act as a	15 ECTS PT
mentor. Research topics are developed by the professor in organic chemistry, polymers &	30 ECTS FT
materials and chemical engineering.	

PT: Part-time FT: Full-time

2 ECTS

> ASSOCIATED LABS COBRA http://www.lab-cobra.fr/ PBS http://pbs.univ-rouen.fr/ LSPC http://lspc.insa-rouen.fr/

cfi@insa-rouen.fr

Find more information about the department on Youtube here

ENERGY ENGINEERING

The Energy Engineer is at the heart of current environmental issues. She or he has increased skills in the fields of energy management, control and renewal as well as in the development of terrestrial, aeronautical and space propulsion systems.

	4TH YEAR
FALL – S7	
EP41-COMB: Combustion 2	2,5 ECTS
The objectives of the course are to (i) Understand the local governing equations used in	
combustion; (ii) Connect "chemistry" with "fluid mechanic", (iii) Understand the meaning of	
chemical equilibrium and implications, (iv) Know the basics of chemistry processes applied to	
combustion, (v) Have a comprehensive description of the flame structure, and (vi) Study basic	
practical cases retrieved in combustion technology (PSR, 1D flame).	
EP41-TPTH: Practical works on heat transfer, fluid mechanics, thermodynamic	4,5 ECTS
The students have to work on practical installations and to apply the theories learned in the	
courses.	
EP41-DDRS: Project on Sustainable Development	2,5 ECTS
Research project on a specific subject dedicated to an open question linked to sustainable	
development. Oral presentation and report.	
EP41-SNE: Numerical simulation of flows	3 ECTS
The objective of this course is to help the future engineers on how to rationally use a computer	
software dedicated to fluid dynamics related problems. This type of numerical tools is currently	
very useful in the design and the analysis of complex fluid flows. In the framework of this course,	
the open-source software, OpenFoam, is used to illustrate the capability of the current CFD.	
Some selected test cases are simulated to assess the accuracy and the robustness of the code.	
The objective is to be familiar with a conceptual tool in fluid dynamics.	
EP41-DYNGAZ: Introduction to fluid dynamics in compressible flow	2 ECTS
The objective of the course is to acquire the compressible fluid mechanics bases.	
EP41-TURB : Turbulence	2,5 ECTS
Introduction to the concepts of turbulence.	
EP41-2PHAS : Two-phase flow – Fundamentals	2 ECTS
Learn and understand the essential notions related to two-phase flows. Learn and understand	
the link between the local (and exact) balance equations and the one-dimensional models for	
two-phase flows. Know how to calculate the pressure drop in conduits for two phase flows. Be	
able to predict a two-phase flow configuration in conduits from flow regime maps.	
SPRING – S8	
EP42-TMACH2: Turbomachinery	2,5 ECTS
Design and efficiency of axial/centrifugal turbomachinery	
EP42-2PHAS2: Two-phase flow - Applications	2 ECTS
Learn and understand the usual industrial applications of two-phase flows. Be able to model a	
two-phase flow with a phase transition. Be able to model a two-phase flow including a solid	
phase (potentially mobile). Investigation of three applications: boiling, condensation and	
fluidized beds. Investigation of three applications: boiling, condensation and fluidized beds.	
EP42-VIB: Vibration	2,5 ECTS
Study of systems with one degree of freedom (DOF), Study of systems with n DOF, Analytical	
dynamics of discrete systems: Lagrange equations, Kinetic and potential energies of a simple	
continuous system, Simplified study of a bending rotor	

ENERGY ENGINEERING

	5TH YEA
FALL – S9 EP51-ED-SNEA and EP51-ED-PROJET-SNEA: Numerical modelling and flow simulations	3 ECTS
Introduction and extensive use of CFD tools (Openfoam) for flow simulations. Course and project.	5 2013
EP51-ED-ENB and EP51-ED-ENB-PROJET : Building Energy	3 ECTS
Establish heating requirement for every single room, calculate energy consumption for heating, cooling, lighting and hot water providing, check conformity to French Thermal Regulation. Courses and project.	JECIJ
EP51-SP-ATOM: Atomization and spray	
To introduce the main physical concepts in atomization. Definition of the basic tools to treat a problem related to the atomization. Track: PS	1,5 ECTS
EP51-SP-AERO: Aerodynamics	2 ECTS
This course extends fluid mechanic concepts to the aerodynamic performance of wings and bodies in subsonic and incompressible regime. The course has three components: (i) fundamentals of viscous and non-viscous flows, including forces and moments and laminar/turbulent boundary-layer results for the prediction of the flow separation on profiles; (ii) non-viscous flows, including 2D potential flows; (iii) aerodynamics of 2D airfoils, including thin airfoil theory.	2 2015
EP51-SP-NVH: Noise, Vibration and Acoustics	1,5 ECTS
To understand the main phenomena in general acoustics. To be able to calculate the main parameters used in acoustics.	1,5 ECT5
Track: PS	
EP51-SP-TURBA: Advanced modeling of turbulence Advanced modeling of turbulence Track: PS	2 ECTS
EP51-SP-SNEA: Advanced Numerical Simulation of Complex Flows To understand in deep the turbulence models and the numerical methods to solve complex flows. Course and practicals on YALE2.0 code.	3 ECTS
Track: PS	
<u>EP51-SP-COMBT</u> : Turbulent Combustion Detailed study of transport equations in reactive flows and corresponding turbulent combustion models. Application of YALES2.0 LES code to solve these equations for basic cases.	2,5 ECTS
Track: PS	4 5 6 7 6
<u>EP51-SP-TP</u> : Practical work (engine, Optical diagnostics) Application of optical diagnostics for turbulent and reactive flows: PIV, LII, PLIF. The course includes laboratory exercises that are divided in two parts: 1) Optical exercises where the three laser diagnostics are discovered. 2) Exercises for common engine technologies (car engine, cogeneration, annular combustor), which have been taught in previous courses in the EP department." <i>Track: PS</i>	4 ECTS
FRENCH AS A FOREIGN LANGUAGE (FLE)	
FLE courses are available for international students throughout the academic year.	2 ECTS
Le courses are available for international students throughout the academic year.	ZEUIS
EP41 – PIE INDUSTRIAL PROJECT	
Project with an industrial partner.	12 ECTS
RESEARCH AND DEVELOPMENT PROJECT	
Students can conduct research alongside an experienced professor who will act as a mentor.	15 ECTS PT 30 ECTS FT
	rt-time Ill-time
Renewable Energy BE	

Renewable Energy

Propulsion Systems

> ASSOCIATED LABS

http://www.coria.fr/

http://gpm.univ-rouen.fr/

CORIA

GPM

RE PS

G

ep@insa-rouen.fr

INDUSTRIAL RISKS AND PROCESS ENGINEERING

The IRM engineer intervenes at all levels of the industrial risk problem. Its role is to ensure the integration of the various aspects of security either internally as a security manager, or externally as an expert belonging to supervisory authorities, insurance companies or consulting firms.

	3RD YEAR
FALL – S5	
MRIE32-RAC: Radiation Combustion	3 ECTS
Basic knowledge necessary for the understanding of the phenomena of combustion and the	
thermal radiation necessary for the quantification of the effects of fires and explosions.	
	4TH YEAR
FALL – S7	
MRIE42 : Reliability	6 ECTS
Modeling systems	
 Functional Analysis: Failure Mode, Effect and Criticality Analysis (FMECA), Failure 	
Tree	
 Analysis, Event Tree, Reliability Block Diagram, State Graph and Markov Graph. 	
Functional analysis of the networks	
 Combinatorial Logic Analysis of states (operations, failures, gradients,) 	
 Fault data, statistical data processing and databases (SdF, Reliability, Maintenance) 	
Probabilistic Analysis of Safety and Functioning of Systems (probability,	
distributions,)	
 Probabilistic Analysis of the Reliability of Structures 	
Simulation by the Monte Carlo Method	
Maintenance Oriented Reliability	

	5TH YEAR
FALL- S9	
MRIE51-REX: Experiences Feedback	3 ECTS
Feedback, investigation after accidents, technical factors to organizational and human factors	
in industrial safety and nuclear safety	
MRIE51-SRC: Chemical Reactor Stability	3 ECTS
The objective of this study is to develop a general method to determine thermal runaway	
boundaries for refining and petrochemical processes which may potentially undergo reaction	
thermal runaways.	
MRIE51-EQR: Quantitative Risk Assessment	3 ECTS
Introduce students to a Quantitative Risk Assessment (QRA), a quantified risk assessment	
method used in international oil and gas projects.	
MRIE51-PTA: Advanced Unit Operations and Pollution Treatments	3 ECTS
Gas pollution treatment and processes. Absorption- Absorption with chemical reaction	0 5 0 7 0
MRIE-PRORECH: Research Project	9 ECTS
Immersion Project with LSPC and CORIA Research Teams	
MASTER-M2-EFE-GP-CER: Chemical Engineering Reaction	3 ECTS
In the first part, we will study the different method to measure the non-ideality of a chemical	
reactor and then, how to predict the conversion in such reactor. In the second part, we will	
study the transient state in continuous reactor.	
MRIE51-MFC: Turbulent Flows	3 ECTS
This course Introduce basic properties of turbulence: Random vortical fluctuating structures over a large range of length- and time-scales. Introduce the importance of turbulent mixing and	
transport of momentum in practical flows. Expose the students to theoretical, numerical and	
experimental techniques used to describe and quantify the effects of turbulence.	
experimental techniques used to describe and quality the effects of turbulence.	

FRENCH AS A FOREIGN LANGUAGE (FLE) FLE courses are available for international students throughout the academic year.	2 ECTS
RESEARCH AND DEVELOPMENT PROJECT Students can conduct research alongside an experienced professor who will act as a mentor. Research topics are developed by the professor in organic chemistry, polymers & materials and chemical engineering.	15 ECTS PT 30 ECTS FT

PT: Part-time FT: Full-time

> ASSOCIATED LABS COBRA http://www.lab-cobra.fr/ PBS http://pbs.univ-rouen.fr/ LSPC http://lspc.insa-rouen.fr/

mrie@insa-rouen.fr

Find more information about the department on Youtube <u>here</u>

GPGR

MATHEMATICAL AND SOFTWARE ENGINEERING

The Mathematical Engineer is distinguished by his analytical and conceptual approach to problems. He or she can quickly learn new ideas and techniques to apply them in practice. He or she must master the different techniques related to Mathematics and Computer Science which are his main tools.

	5TH YEAR
FALL- S9	
Modeling and Numerical Simulation	8 ECTS
This course covers several important aspects of mathematical modeling and numerical simulations for	
various applications.	
 Perturbations and inverse problems 	
 Numerical methods for front propagation 	
 Advanced numerical methods for the wave equation 	
- Mathematical Modelling and numerical simulation: theory and applications to image	
processing, energy and coastal morphodynamics	
Variational methods for image processing	0 5 0 7 0
Optimization for Operations Research and Data Science	8 ECTS
This course covers several important aspects of optimization, from exact methods with mathematical	
programming to approximate methods with or without performance warranty. Applications to operations research or data science include practical homework and computing.	
- Large Scale Optimization: main results in general optimization and some advanced technics	
like decomposition methods	
 Network Design: solving optimization problems including a network or a graph model 	
- Complexity and Approximate Algorithms: NP-complete problems, design of approximate	
methods with some proof on the performance ratio, some results on complexity for parallel	
algorithm.	
 Metaheuristics: approximate methods for combinatorial optimization problems. 	
- logic programming and constraint programming	
Stochastic control and Finance	8 ECTS
Basic and advanced methods for modeling and solving problems in mathematical finance.	
- Optimal Control and applications	
- Stochastic control and applications to finance	
- Stochastic Calculus and Finance	
Advanced concepts in artificial intelligence	5 ECTS
- Explainable Al	
- Virtual and Augmented Reality	
Machine Leaning and Data Approximation Applied to Image Processing and Big Data	1 ECTS
During this course, we focus on applications of machine learning to image processing. More precisely,	
we will study of Adaboost method, often used in image processing, which has the distinction of using	
ML. The importance of the definition of descriptor vectors will be underlined, where is the necessary and	
sufficient information to deduce the underlying model by learning will be treated. Convergence,	
genericity, parades to over-learning are also studied. We will then introduce the use of machine learning	

applied to data science (big data), and we will study artificial neural networks (ANN) method.

PROFESSIONAL OR RESEARCH PROJECT	
The course is made up of a mid-term presentation and a final defense. The topics are to be discussed with the professors of the department and can have a non-negligible research component, either in mathematics or in computer science, according to the skills the exchange student wants to develop.	15 ECTS PT
FRENCH AS A FOREIGN LANGUAGE (FFL) FLE courses are available for international students throughout the academic year.	2 ECTS
> ASSOCIATED LABS	PT: Part-time FT: Full-time

LITIS http://www.litislab.fr/ LMI http://lmi.insa-rouen.fr/

Find more information about the department on Youtube <u>here</u> È

CIVIL AND URBAN ENGINEERING

The GCCD specialty prepares engineers capable of leading the design, implementation, operation, management and renovation of construction works and infrastructure. They gain expertise in many fields such as Sustainable Construction, Environment, and Building Security and Risk Analysis.

🕅 Rouen Campus

http://lspc.insa-rouen.fr/

	5TH YEAR
FALL - 59	
<u>EP51 ED-ENB</u> : Building Energy Establish heating requirement for every single room, calculate energy consumption for heating, cooling, lighting and hot water providing, check conformity to French Thermal Regulation.	5 ECTS
<u>M51-CBI</u> : Bio-Inspired Mechanical Design Introduce fundamental concepts of Bio-Inspired Mechanical Design, an approach that seeks solutions to human challenges within the natural world. Methods and solutions from structural mechanics and materials will be studied.	4 ECTS
<u>MRIE51-REX</u> : Experience Feedback Feedback, investigation after accidents, technical factors to organizational and human factors in industrial safety and nuclear safety.	3 ECTS
<u>MECA51-DYNA</u> : Digital Modeling and Simulation in Structural Dynamics Theoretical and numerical tools that allow the modeling of a linear elastodynamic structure during its interaction with the environment, taking into account material or geometric hazards.	4 ECTS
<u>MECA51-DYNAE</u> : Experimental dynamics, model validation and verification Learning theoretical, numerical and experimental tools that allow the measurement of the dynamic properties of a structure and the validation of numerical models.	4 ECTS
<u>GC51-ISIS-STRUC</u> : Structural Reliability Fundamental theory of structural reliability, risk assessment, uncertainty quantification and propagation, First order and second order reliability methods, Monte Carlo simulations, finite element and reliability coupling.	4 ECTS
<u>GC51-ISIS-GEOT</u> : Geotechnical risks Decision making in engineering design considering geotechnical risk.	2 ECTS
FRENCH AS A FOREIGN LANGUAGE (FLE) FLE courses are available for international students throughout the academic year.	2 ECTS
RESEARCH AND DEVELOPMENT PROJECT Students can conduct research alongside an experienced professor who will act as a mentor.	15 ECT PT 30 ECTS FT
	Part-time Full-time
LSPC	

V Le Havre Campus

	5TH YEAF
SPRING – S10	2 5 675
Mechanical design and aerodynamics Track: Wind Energy	2 ECTS
Blade design & composite materials	2 ECTS
Track: Wind Energy	
Project management for the creation of wind farms	2 ECTS
Track: Wind Energy	
Numerical aspects related to wind turbines	2 ECTS
Track: Wind Energy	
Project of wind energy	2 ECTS
Track: Wind Energy	
Marine renewable energy (Wave, Current and Tidal)	2 ECTS
Track: Marine Energy	
Dffshore wind energy	2 ECTS
Track: Marine Energy	
Dffshore structures	2 ECTS
Track: Marine Energy	
Invironmental impact of marine renewable energy	2 ECTS
Track: Marine Energy	
Project of marine energy	2 ECTS
Track: Marine Energy	
Photovoltaic solar energy	2 ECTS
Track: Solar and earth energy	
hermal solar energy	2 ECTS
Track: Solar and earth energy	
Geothermal energy and positive energy buildings	2 ECTS
Track: Solar and earth energy	
Biomass and waste energy	2 ECTS
Track: Solar and earth energy	
Projects of solar and earth energy	2 ECTS
Track: Solar and earth energy	
Civil engineering: generalities and costing	2 ECTS
Track: Civil engineering	
Dnshore foundation for renewable energy	2 ECTS
Track: Civil engineering	
Nanagement of civil works for renewable energy projects	2 ECTS
Track: Civil engineering	2 5 6756
undamentals of electrotechnics and energy converters	2 ECTS
Track: Humanities and electrotechnics	
Grid integration, intermittency, and energy storage Track: Humanities and electrotechnics	2 ECTS
Energy savings and legal aspects, project management	2 ECTS
Track: Humanities and electrotechnics	2 LUI 3
Global warming, world energy situation and geopolitical aspects	2 ECTS
Track: Humanities and electrotechnics	2 2013
RENCH AS A FOREIGN LANGUAGE (FLE)	
	2 ECTS
ELE courses are available for international students throughout the academic vear.	
ELE courses are available for international students throughout the academic year.	
ELE courses are available for international students throughout the academic year.	
	15 ECTS PT

PT: Part-time FT: Full-time

Find more information about the department on Youtube <u>here</u>